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On Monotone and Convex Spline Interpolation* 

By Paolo Costantini 

Abstract. This paper is concerned with the problem of existence of monotone and/or convex 
splines, having degree n and order of continuity k, which interpolate to a set of data at the 
knots. The interpolating splines are obtained by using Bernstein polynomials of suitable 
continuous piecewise linear functions; they satisfy the inequality k < n - k. The theorems 
presented here are useful in developing algorithms for the construction of shape-preserving 
splines interpolating arbitrary sets of data points. Earlier results of McAllister, Passow and 
Roulier can be deduced from those given in this paper. 

1. Introduction. Let x0 < x <... < X be real numbers, let n and k, 0 < k < 
n - 1, be integers, and let 

Sn [x Nx] = {s E Ck[xoxN]: s(x) E Pn, X E [xi,xil], i = 0,1,...,N- 1} 

be the set of splines of degree n and deficiency n - k at knots xi, i = 1,..., N-1. 
In a previous paper [2], a necessary and sufficient condition for the existence of 
monotone and convex s E S3[xo XN] interpolating a set of data at the knots was 
given, and in [3] an algorithm for the construction of shape-preserving interpolating 
splines was described. Further investigations led to an extension of the above results 
to S E Sk[xoxN], where 1 < k < n-k and s(i)(xi) = 0, j = 2,...,k, i= 
0, 1,.. ., N, whenever k > 2. Such splines are obtained from Bernstein polynomials 
of monotone and/or convex interpolating linear splines with two knots in (xi, xi,,), 
i = 0,...., N - 1. The well-known theorems of [9] and [7] (see also [8] for related 
results), where linear splines with one knot in (xi, xi +), i = 0,. . . , N - 1, are used, 
can be deduced from those presented here. 

This paper is divided into three parts. In Section 2, n and k are prescribed and a 
data-dependent condition is given. In Section 3 the degree is computed to ensure the 
existence of a monotone and/or convex interpolating spline, and a degree-depen- 
dent condition is provided. Section 4 is then devoted to final conclusions and 
remarks. 

The results of Sections 2 and 3 enable us to derive an algorithm for the 
construction of shape-preserving interpolating s E Sk[x0, XN]. The spline can be 
selected by the user to perform Lagrange or Hermite interpolation, to be piecewise 
monotone and/or convex (concave), n and k can be assigned or automatically 
computed by the code, according to Theorem 3. A detailed description of this 
algorithm, together with numerical and graphical examples, will be reported elsewhere 
[1]. 
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Finally, we note that all the results of this paper, which are stated for increasing 
(I), convex (C) or increasing and convex (IC) data, can be easily modified to the 
other cases. 

2. Data-Dependent Existence Conditions. Let (xi, yi), i = 0,1,..., N, be a set of 
data points. Setting hi = xi+1 -x, Ai = (Y+ - y,)/h,, i = 0,..., N - 1, we say 
that the data are increasing if A,> 0, i = O . . ., N- 1, and convex if A+ 1 > A, 
i= 0,...,N-2. Nowlettheintegers k, ni, 1 <k ni-k, i=O,...,N- 1,be 
given and let n = max{ni, i = .... ., N - 1). We introduce the sets 

LSn1 [x XN] { e Sn [XO xN] S(X) e Pn, for x E [x, xi+,], 

(2.1) ~~~~~~~~~~~i 
= 0, ... IN -1 ; 

s(')(x,) = 0, j = 2,...,k, i = O,...,N - 1; 

RSn[XoI XN] = {s e Sn [Xo XN]: s(x) e Pn, for xE [xiex,+l] 

(2.2) 
i=0 . N-1 

(2.2)~~~~ s) ()xj+ ) = 0, j = 2, ..., In,-k, i0, .. IN-1, 

s(j)(xi ) = 0, j = 2,..., k, i= II,.N},I 

BSk[xo, XN] = RSnk[xo,X N] + LSnk[xoXN] 

(2.3) {5 (E Sn[XO XN]: s= + + ) E LSnk[xo xN], 

R e RSnk xoXN]}. 

For k = 1 or ni-k= 1 the corresponding conditions are vacuous and we have 
BSI[x0, XN] -S2[x0 XN] and BS3[xo, X] S3[x, XN] if n, = 3, i = 0 ... 

N-1. We remark that s 0)(Xi) = 0, j = 2,..., k, i = 0,1,. . ., N, for any s E 

BSn~x0, XN]. We need the set of points ti, i = 0,1 I...,2N+1, where 

to = xo; t2N+l 
= 

XN; 

(2.4) i+ 
k 

h = + n,- i = 0,.. ., N - 1, 
ni n,~~~~~~~~~~i 

which we use to define 

LS1 [to t2Nl] {l e C[tO, t2N+l]: I(x) E P1 for x E [to tj 

XE [t21+1,t2+3]i, 0,... ,N- 1}, 

(2.6) RSf1[to t2N+l] = {1 E C[tOt2N+1]: I(x) E P1 forx E [t2it2;+2], 
i = 0 ..., N - 1; x E [t2N, t2N+1]} 

and 

(2.7) BS2[to, t2N?] - { c [to, t2N+1]: l(x) E P1 for x E [ti, ti, l], 

i = 0,1,...,2N}. 

It is an easy task to see that 

(2.8) BSP[t0, t2N+1] = LS [to, t2N+1] + RSON[t, t2N+l]. 
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We finally recall that the mth degree Bernstein polynomial of a function f in the 
interval [xi, xi+1], i = 0,..., N - 1, has the form [6] 

Bj(x; fm) = E ( )( xi + m-hi)(x 
- 

-)(xi+ --x 

and the following properties hold: 

B/J)(x; f,m) 

(2.9) _1 M! rnMj_ 

(2=h7' (m j)! (m ) ( lf xi+ h1i )(x - 
-) (xi+ -x) i 

(2.10) B'Q)(xi; f,m) M1m!/Aif(xi) 
hJ (m - j)! 

2i i+; f, m) -h 
1 j)! A i+J) 

where Ai (vi) is the jth forward (backward) difference with step hi/m, j= 
1,2, ... , m. 

Now let B: C[x0, XN] -_ C[x0, XN] be the linear operator such that 

(Bf )(x) = Bi(x; f, ni) for x e [xix1?j, i = +.. . .,N - 1. 

It is simple to prove the following 

LEMMA 1. The restriction of B to BSf?[t0, t2N+1] is an invertible map from 

BSO[to, t2N+1] to BSnk[xO, XN]- 

Proof. Let I e BS?[to, t2N+l ]. Then we have from (2.8) that 

I = X +?, where X E LS?[to, t2N+l] and M E RS0[to, t2N+1j. 

From (2.5), (2.6), (2.10) and (2.11) it is easy to see that 

Bi')(xi; X, ni) = B(/)(xi+?; p, ni) = 0, j = 2,.. ., k, i = 0,..., N - 1, 

BQ'1)(xi+; X, ni) = BIJ)(xi; p, ni) = 0, j = 2, ..., n -k, i = 0,..., N - 1, 

and Bi)L(xi; X, ni1) = Bfj)(xi; A, ni); B/i)L(xi; , ni-1) = Bij)(xi; I, ni) for 

j = 0,1, i = 1, .. ., N - 1. Hence, from (2.1), (2.2), BA E LS,k[xO, XN], Bli E 

RSI4X0, XN], and definition (2.3) implies immediately that Bi = B(X + u) = BA + 

Bp E BS1[x0, XN]. 

On the other hand, let s e BSk[xO, XN]. Using (2.3), (2.1) and (2.2), we have that, 

for any x e [xi, xij, i = 0, .. ., N - 1, s(x) = 44 (x) + i (x), where ,4C P,I and 

(2.12) (')(xi) = 4'(N(xi+?) = 0, j = 2,..., k, 

21' )(xi+?) = #((x) = 0, j = 2, ...,n - k. 

Since the two polynomials can be put in the form (see, e.g., [6, p. 48]) 

k(x) = n E ( V) X (xi) (xi+)( l X) 

1 IvIO v 
4'(X) = jn (i>L~x - x i)v(x1?1 - liv 

hi iV=O 
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we can write 4 (x) = B,(x; X,, ni), A (x) = B,(x; i,,, n,), where XA, ft, are piecewise 
continuous linear functions such that 

i nYh) I y; I h n1) = tIp, v = 

Moreover, it follows from (2.12), (2.10) and (2.11) that they are made up of two 
linear segments which intersect each other respectively at t21 + and t2i+2 (see (2.4)). 
So the piecewise linear function 1, = ?, + I, has two break points and, of course, 
s(x) = Bi(x; li, n,) for x E [x,, xijl], i =0, .., N - 1. If we use again (2.10) and 
(2.11) for j = 0,1, we have 

l1_1(x1) = 1,(xi), h V111(x) = , (X), i = 1,..., N, 

and so I e BS1[to, t2N+1], where 1(x) = 1,(x), x E [x,, x,+1], i = 0,..., N - 1. The 
obvious observation that Bi = s then completes the proof. 

The well-known shape-preserving properties of Bernstein polynomials ensure that, 
if / e BSO[to, t2N+1] is I, C, or IC, then the corresponding s = B/ is also an I, C, or 
IC function. 

Moreover, we can state the following 

LEMMA 2. Let s E BS[ X40, XNI be C or IC. Then / = B 1s is also a C or IC linear 
spline. Further, if k = n, - k, i = 0,..., N- 1, and s is I, then also I = B's is 
increasing. 

Proof. Let s E BSkI[xoxNI be any C or IC spline and let I = B-1s, E 

BSf[t0, t2N+?]. It follows from (2.7) that \21(x, + vhl/nl) = 0, v 01,..., n,, 
v + k - 1, v + n, - k - 1, i = 0O ... ,N - 1. 

In the case k = n -k, using (2.9) we have 

(2)( 1 1 n ! tn -2\221 k-i \ 
B/2(X; l1 n)= - Ii l x?+ h1 1) h7n (n, -2)!\k - ljI ' n, j 

and thus the convexity of s implies ?2l(x)> 0, x e [xI, x1j, i = 0,.. ., N - 1. 
For k < n1 - k we have 

B (2) 
(XI; li, n I) 

= [(X - X,)(X - Xi)] k-1[X(X - Xl) 
n2k + (X+1 -X) , 

where 

1 n -! ( n _ A21 x + -k 
h- 

h hn, (n, - 2)! (k - 1I) I~x n I' IA~~l~x + h~ j 

If we suppose that / is not C, then X or p (or both) are negative. Suppose, without 
loss of generality, that u < 0. It is easy to see that the polynomial [X(x - xi)n -2k + 

(X,+j _- x)' -2k] has only a simple zero in (x,, x,+1), and, for some x E [x,, x +1], 
B(2) ( x; 1,I n,) < 0, which contradicts the hypotheses. 



MONOTONE AND CONVEX SPLINE INTERPOLATION 207 

Moreover, B/')(xi; li, ni) = nilA(xi)/hi, and this, together with the fact that any 
/ which is C is also IC if Al(xo) > 0, will complete the proof for the IC case. Finally, 
if k = ni-k, i = 0,...,n + 1, then Al(xi + vhi/ni) = Al(xi), V = Of k 1 
Al(xi + vhi/ni) = Vl(xi+1), v = k, . . ., n - 1, and for any I spline s E 
BS,k[XO, XN ], / = B -'s is also increasing. 

It is now clear that the existence of an I, C or IC interpolating spline, that is the 
existence of s e BSnk4x0, XN] such that s(xi) = yi, i = 0, 1,..., N; s M (X) > 0 
or/and s(2)(x) > 0, x E [XO, XN], is ensured if it is possible to construct an 
interpolating linear spline which is, moreover, I, C or IC. We note that, for any 
sequence di, i = 0, 1,..., N, there is one and only one / E BS?[tO, t2N+1], such that 
l(xi) - yi, /(1)(xi) = di, i = 0,1, ..., N, where the values yi are the given data, and 
d ,I i = 0, 1, . . ., N, are free parameters. 

So we can reformulate the problem into the following one: to compute the values 
di, i = 0. 1,..., N, such that the corresponding s E BSf[to, t2N+ 1] is I, C, or IC. 
From definition (2.7) it is simple to obtain the following results, which are stated in 
the form of a lemma for notational convenience. 

LEMMA 3. Let / E BSO[to,t2N+1] be such that l(xi) = yi, 1('(xi) = di, i= 
0,1I,.., N. Then Iis Iin [xiI xi+1], i = 0,..., N -1, if, and only if, (di, di+,) E= IDi 
where 

(2.1 3. a) IDi tu, v) E- R2:u>O .v<- k i\ if k < nj-k 

(2.13.b) IDi-{(u, ) ER2: U > V>0, v= -u + 2Ai} if k = ni-k; 

is C if, and only if, (di, di+ 1) E CDi, where 

CDi=f((u~v) eR2: U A v)> - k u+ lni 
1 (U, VJv EU n k ' Ak 

(2.14) nik 
n1-k ni 

is IC if, and only if, (di, di+1) e ICDi, where 

(2.15) ICDi = {(u, v) E CDi: u > 0}. 

The nonempty convex sets IDi, CDi, ICDi are shown in Figure 1. 

We see at this point that the problem of I, C, or IC spline interpolation is reduced 
to finding a sequence of slopes di, i = 0,1,..., N, such that every ordered couple 

(di, di+1), i O. 0,..., N - 1, belongs to IDi, CDi or ICDi, respectively. 
A more general formulation of this problem is given below. Let Gi, i = 0, 1, . . ., N, 

be arbitrary nonempty sets, and let the domains Di C Gi x Gi+1, Di * 0, i= 
O.. . ., N-1, be given. 

Problem P. Do there exist elements gi E Gi, i = 0, 1, . . ., N, such that (gi, gi+ 1) E 

Di, i = O. ..., N-I? 
Defining the projective operators HJi?1 G, x G,+1 > Gj, j = i,i + 1, i = 

0O ..., N-1, and the sets B C Gi, i =0,1,..., N, where 

(2.16) B, = iL ?1(Di), i =0,...,N-1; BN =GN, 

we introduce the following algorithm and lemma and give an answer to Problem P. 
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V ~~~~~~~~~~~~~V 
(a) (b) 

n. 
1A 

k i 

CD~~~~~~~~~~~~~~~~~~~~ID 

ICD~~~~~~~~~~~~~~XD 
Thedomains ID,, CD,, ICD, for (a) k < n,-k, 1b ID 

2Fr=1, i .D. .\ , 

2.iA, = B. r) kA 

i I~~~~~~~IGR 

3. Set AO = 0, se J = iNn. tp.Ohrie otne 

I- ID* A I 1 ) 

2.AlBnP 

3. Stop. 

LEMMA 4. Let J be computed as in Algorithm A. 
(a) If J = N, then there are solutions to Problem P. 
(b) If J = N and g, E GI, i =0,1I,. , N, are such that g, (4 A, for some j, 

1< j < N, then the sequence g1,, = 0, 1, . . ., N, is not a solution to Problem P. 
(c) If J = j * N, then there are no solutions to Problem P. 

Proof. Let J = N and gN E N. It follows from steps 2.2, 2.1 inthe algorithm 
thatgN rJN-,(N1 N G} D-1) and so, from (2.16), there exists gN-1 

GN-1 such that (gN-11 gN) ( DN-1 andgN- I AN-1- 

Since the above arguments hold for any i, i N, . . . (b) the proof of statement (a) 
follows from the induction principle. 

Now let J = N, g, E Gi, i= 0,N,,N, and gj 4 A,, I < j N. Wenotethat 
steps 2.1 and 2.2 are equivalent to setting 

(2.17) AP = (-1A xG-1 X B.} n DDI-), 

and so (g, gB)1 ; BJ n DJ 1 Hence, if (gj - 1, the proof of 
statement (b) is complete. Suppose that (gc i, gu) E. DJ- and, consequently, 
(ga)gI) J AJNt X Bte If gol Bn = tJoJPrb(DJ), we have (gPg+ ) 4 D, and 
again (b) is proved. If gf _ AJ we can repeat the above arguments for the index 
jP-o1. We note that = B = AN ItDO) and, from go e AO, it follows immediately 
that (tgo gao) a Do e This completes the proof of statement (b). 
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V V 

(a) (b) 

T s; T 1 X ~~~~~~T 
~ 

~-'T 
-- 

----~ 

H~i-l q u W~A- 9 U 

I r~~~~Tr 

iii I~~~~~~~~~~~I 

i-A U. 

FIGURE 2 

Geometric interpretation of steps 2.1, 2.2 of Algorithm A. 
(a) I data, k < n, - - k; (b) I data, k = n,_- k; (c) IC data, 

k < n,_ - k; (d) IC data, k = n k. - - 

Finally let J =j * N. This means that Ai 0,I A_1 0 and, from (2.17), 
{J-1 XB D-1 I 0. Since this implies that, for any sequence gl,, 

0, I, .. .. N, ( gj - gj ) {AJ X BJ I n DJ _ ,the proof of statement (c) is similar to 
the previous one. 

Now we can apply Lemma 4 to the sets IDi, CD,,I ICD, given in Lemma 3. Before 
doing so, we point out that, in this case, G.-R.i= 0,1, .. , N, B.-[O. n,Al\,k] or 
B.-(-o, lx, or B.-[?, Aji, i = 0,. .. ., N - 1 for I, C or IC data, respectively. A 
geometric interpretation of steps 2.1 and 2.2 of Algorithm A, for I or IC data is 
given in Figure 2. We note that C and IC cases have an identical representation. 

Setting a inf t u E AN T (2) = supm t u h At i = 0, 1, . . ., and using (2.13), 
(2.14), (2.15), it is possible to rewrite the general Algorithm A in more detailed 
forms, for I, C or IC data, respectively. 

ALGORITHM A/I. 
1. Set a(1) = 0, a 2) = n A 0/k; J = N; n N =k; N = + ?C. 

2. For i= 1, ... I N 
1. a(1) 0 if k < n_ -k, or a(1)= -a(2)1 + 2A if k = n - 

a(2) min{n,,/k; -a(i) + n,1A11/k}. 
2. If a(2) < a(1) set J = i and stop. Otherwise continue. 

3. Stop. 
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ALGORITHM A/C. 

1. Set a(l - -co, a&) = 'A0; J = N; AN = + N o 

2. For i= 1, .. ., N 
1. a(l) - -(k/(n,-, - k))a(2) ? n 1A k)/(n,_1- ; 

(2) mint{Li; -((n,_ - k)/k)aQ), + n,_ii_/k} 
2. If a(2) < a 1) set J = i and stop. Otherwise continue. 

3. Stop. 

ALGORITHM A/IC. 

1. Set a(l) = 0, a) = A; J=N;/\N= +Co 

2. For i 1,. .., N 
1. a(l) - -(k/(n_ - k))a(2) ? n11A k)/(n,1- ; 

a(2) min{tAl; -((n1ll - k)/k)a'),1 + nj-1Ajj1/k}. 
2. If a(2) < a(') set J = i and stop. Otherwise continue. 

3. Stop. 

Linking together Lemmas 1, 2 and 4, we can state the following 

THEOREM 1. Let I, C or IC data (xi, y1), i = 0, 1, .. ., N, be given, and let J be 
computed by Algorithm A/I, A/C or A/IC, respectively. There exist I interpolating 
splines s E BS[XOI XN ] if J = N. If k = ni-k, i = 0 ..., N -1, there exist I 
interpolating splines s only if J= N. There exist C or IC interpolating splines 
s E BSkIxo, XN] if, and only if, J = N. 

We conclude this section by noting that, if k < n- k, i 0,... ., N - 1, and the 
data are increasing, then Algorithm A/I will yield ai1) < a2), i- 0,1,..., N. In 

other words, we obtain the well-known fact (see e.g., [5]) that there always exists an I 

interpolating spline s e Snk1xO XN] whenever k < n - k. 

3. Degree-Dependent Existence Conditions. In the previous section we noted that 

it is always possible to find an I interpolating spline s e Snk[xo, XN] when k < n - k. 

On the other hand, it is shown in [9] that, if C interpolation is desired, then the data 

can force n to be very large, and that this fact is inherent in the nature of C spline 

interpolation. These considerations suggest to investigate the relationship between 

the degrees ni of the various polynomial pieces of the spline, and the "roughness" of 

data in case of C or IC interpolation. The results, which are easily obtained from 

Algorithms A/C and A/IC, are collected in two theorems. 

THEOREM 2. Let A i+I > A j, i = 0..., N- 2, and let the sequence n,, i= 
0O ..., N-1, be such that 

nO > 2k; nN1 > 2k, 

(3.1) n, >-max{2k k } hi1,...,N - 2. 

Then there exist C interpolating splines s E BSnkIX0 XN]. If A 0 > 0 and 

(3.2) no0 > max{2k, k,,}) 

then there exist IC interpolating splines s E BSnk[XO, XN]- 
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Proof. If we execute step 2.1 of Algorithm A/C for i = 1, we obtain al) AI0, 
a2) = 'Al and so a(') < a(2). Now suppose that, for some i, 2 < i < N - 1, a(')1 = 

I*-2' a(2)1 = A\i-. Step 2.1 gives 

l= A,1 - min{A2; - ' ? f + -A1) 

and, from (3.1), we have again ad1 - A11, a(2) A1; a(1) < a(2). Step 2.1 for i = N 
gives 

- A N-i' 
2= -nN-1 -k AN ?nN-1 AN- 

a()=i\ N- a 
()k 

N-2 + k N-1 

and so a() < a (2). 

The proof of the first statement is completed using Theorem 1. Executing step 2.1 
of Algorithm A/IC for i = 1, we obtain a() = A0 and a(2) =min{ Al; nOA0/k). 
Since (3.2) implies A1 < nOA0/k, the proof of the second statement is identical to 
the previous one. 

The next step is to give an analogue of Theorem 2 for nonstrictly C or IC data. 
We need an intermediate result given in the lemma below. 

LEMMA 5. Let A ,+1 >A,, i = O...., N-2, and let the sequence n,, i =O..... 
N - 1, be such that 

no > 2k, nNl >? 2k, 

ni, > max{2k; k 
Al 

}, ni > k 2 , 

(3.3) n2 > max{2k; k2(Ao A3) + kni(A3A1l) 

nl > max{2k; k A AA -}, i =3,..., N -2. 

Then there exist C interpolating splines s E BSk[xo, XN] such that 

(3.4) do = s(')(XO) = AO\; dN = 
s(')((XN) = AN-l. 

Proof. In this case we must apply directly Algorithm A with G,.R, i= 

0, 1, . .. I N; 

DI-CDj, i = 1, .. ., IN 2 (see (2.14)); 

DO= CDO n {(u. v) E R2: U 0 = {(A)0, A0)) 

and 

DN-1 = CDN-1 n {(u, V) E R: V = AN-1} = {(AN-1,AN-)}. 

The boundary conditions (3.4) are implicitly introduced by the above definitions, 
and so it will be sufficient to prove that Algorithm A will yield J = N. We note also 
that, in this case, Algorithm A is a slightly modified version of Algorithm A/C. 

Steps 2.1 and 2.2 for i = 1 give a(l) = a(2) = 'A0 and, for i = 2, we have (see A/C; 
step 2.1) 

a(')= - k + n A; a2) =min[; - n 'A + 1 
2 n1-k 0 n1-k I 

-n,- k kI 
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and, by (3.3), a2f2 = A2, a(') < a For i = 3 steps 2.1, 2.2 give 

a = 2; a32) = min{A3; -n ka2 + k 2 

and (3.3) implies a(2) = 2 and consequently a(l) < a(2). Now it is not difficult to 
proceed as in Lemma 5 and show that A1 = (1) < a = 1, i = 4,..., N - 2. 
Finally, steps 2.1, 2.2 for i = N - 1, i = N and the definition of DN-1, give 

1 = 1= N-1 and a = = N- 1 Theorem 1 then completes the proof. 
We note that, for IC data, AO >, 0, and the boundary conditions (3.4) imply that 

the interpolating spline s E BSn'4xO, XN] is also IC. For nonstrictly C or IC data, it 
is worthwhile to note that if 

(3.5) Ai-2 = Ai- = \ = Al I+1 for some i, 2 s i N- 2, 

it is impossible to find differentiable interpolating C or IC functions. When the data 
have no "contiguous linear pieces", an extension of Theorem 2 can be given. The 
idea is to divide the data (xI, y1), i = 0,1,..., N, into more subsets of linear or 
strictly C data, and use Lemma 5 to guarantee the existence of more C interpolating 
splines, sharing the same boundary conditions. A formal description is given in 
Theorem 3, whose proof is a consequence of Lemma 5. 

THEOREM 3. Suppose the C or IC data do not satisfy (3.5). Let L= {i e N, 
0 < i < N - 2: A1 = A 1?1) and L = {i E N.0 i< i< N-1: i 0 L}, and let the 
sequence nI i = O .. ., N - 1, be such that 

n, 2kfori = 0, i = N - 1 or i E L; 

( LI1 1 - A I _ _ _ _ _ 

n, > maxk2k; k Ai+ A n > k A 

ni +1 max{2k; k2(A11 - Ai+2) + kn,(A+ 2 - Ai) and 

n I 2k for -2 E L and i - 1 E L; 

A+1 - AI1! n, > 
max{2k; k A -A ) otherwise. 

Then there exist C or IC interpolating splines s E BSnk[Xo, XN]. 

4. Some Remarks. As previously mentioned in the introduction, the well-known 
results of [9], [7] can be deduced from those presented here. In this paper all the 
lemmas and theorems are stated for k fixed. However, they are still valid if we 
introduce, together with the polynomial degrees n, i = ...N - 1, the sequence 
k,, i = .... ., N - 1. This means (see (2.4)) that t2i+1 = x, + k~h1/ni, t2i+2 = xi + 

(n, - k,)h,/n,, i = O,...,N- 1, and that n = max{n,, i = O,...,N - 1), k = 

min{ k1, i = 0,. . . , N - 1. Moreover, if we are interested in the construction of 
linear splines with only one knot in (xI, xI1+), i = 0,..., N - 1, the restriction 
k, < n, - k, is no longer useful and it is sufficient to require k, < n,, i = 0,...,I 
N - 1 with k = min{k1; n, - k,; i = 0,..., N - 1. So we placed ourselves in the 

hypotheses of Passow and Roulier, and Theorem 2 of [9] can be deduced by a 
slightly modified version of Theorem 1. Setting ai = k,/ni, i = 0,..., N - 1, and, 
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as in the previous sections, d, = -(')(XI) = s(1)(x,), i = 0,1,..., N, if the interpolat- 
ing linear spline I has a knot at x, + a,h,, then 

y, + dialh, = y, - d?,+(l - al)hl. 

If we require that / is IC then we obtain 

(d,, di+?) E (u, v) E R2: 0 < u < A,; v a1 u 1 ) 

i=O,...IN - 1, 

and Algorithm A and Lemma 4 applied to this problem are equivalent, respectively, 
to Alpha-Algorithm and Theorem 3.2 of [7]. 

If we are interested in the problem of finding a C or IC interpolating spline 
s E BSn,[X0, XN] for ni > 2, i = O,..., N - 1, and k fixed, then the use of splines 
with two knots (instead of only one) in (x,, x,+1), not only enlarges the family of 
data sets which allow C or IC spline interpolation, but has another practical 
advantage. In fact, a change of the slope d, at xi has a local effect in [xI-1, x I ] 
(since it is absorbed by the contiguous linear segments in [t2,-1, t21] and [t2+1, t2,+2]) 

while in the other case the effect is extended to the whole interval [x0, XN]. From a 
practical point of view, this implies that, if Algorithm A/C or A/IC gives J = j : N, 
we can apply it again from j to N, construct two (or more) splines interpolating the 
sets (x,, yl), i = O,..., j, and (x,, yl), i =j, ...,N and then join together their 
derivatives at x1. Hence the resulting spline is C or IC everywhere except for, at 
most, x E [XJ 1, X A1], but can still be I. 

With respect to Algorithm A and Lemma 4, it is worthwhile to note that they are 
stated in a general form, and seem useful for the construction of "constrained 
separable splines", that is, splines which can be locally defined between every pair of 
knots, and are subject to some restrictions. For instance, they are used in [4] for the 
construction of piecewise quadratic histosplines. We remark that Algorithm A does 
not require that the data are all I or C or IC, and, with a suitable definition of the 
sets D, i =O ..., N - 1 (see Problem P), the resulting code can produce shape-pre- 
serving spline interpolation without preliminary subdivisions of the points. More- 
over, auxiliary Hermite interpolation conditions can be added at some knots (see the 
proof of Lemma 5), as well as any other local constraint. From a theoretical point of 
view, interpolating splines could be introduced without the use of Bernstein poly- 
nomials. For example, an IC interpolating s E S5 [xO, XN] is determined requiring 

s(1)(xI) = d,, s(2)(xI) = el, i = 0,1,..., N, and the problem is reduced to the 
following: Determine the sequences d,, ei, i = 0, 1, . .. , N, such that (d,, el, d? + I, 

e1l.) E DI, i = 0,...., N - 1, where D1 C R4 is the IC region for polynomials 
p E P5. Unfortunately, it is practically impossible to implement steps 2.1 and 2.2 of 
Algorithm A for general subsets of RW and, even if it were, the computational cost 
would be very high. We conclude this section by noting that, since S3[XOXN]- 

BS3 [xo, XN], Theorems (2.2) and (2.3) of [2] can be obtained from Theorem 1. 
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